二分搜索是一种在有序数组中查找某一特定元素的搜索算法。搜索过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。
# 返回 x 在 arr 中的索引,如果不存在返回 -1 def binarySearch (arr, l, r, x): # 基本判断 if r >= l: mid = int(l + (r - l)/2) # 元素整好的中间位置 if arr[mid] == x: return mid # 元素小于中间位置的元素,只需要再比较左边的元素 elif arr[mid] > x: return binarySearch(arr, l, mid-1, x) # 元素大于中间位置的元素,只需要再比较右边的元素 else: return binarySearch(arr, mid+1, r, x) else: # 不存在 return -1 # 测试数组 arr = [ 2, 3, 4, 10, 40 ] x = 10 # 函数调用 result = binarySearch(arr, 0, len(arr)-1, x) if result != -1: print ("元素在数组中的索引为 %d" % result ) else: print ("元素不在数组中")
执行以上代码输出结果为:
元素在数组中的索引为 3